
International Journal of Theoretical Physics, Vol. 19, No. 9, 1980 

Weak Circulation Theorems as a Way of 
Distinguishing between Generalized Gravitation 

Theories 

M. Enosl~ 

Department of Physics and Astronomy, Tel-Aviv UniversiO', Ramat-Aviv, Israel 

A. Kovetz 

Department of Geophysics and Planetary Sciences, Tel-Aviv UniversiO,, Ramat-Aviv, 
lsrael 

Received March 17, 1980 

We proved in a previous paper that a generalized circulation theorem char- 
acterizes Einstein's theory of gravitation as a special case of a more general 
theory of gravitation, which is also based on the principle of equivalence. Here 
we pose the question of whether it is possible to weaken this circulation theorem 
in such ways that it would imply more general theories than Einstein's. This 
problem is solved. Principally, there are two possibilities. One of them is 
essentially Weyl's theory. 

1. I N T R O D U C T I O N  

W e  shall  dea l  here  wi th  a p r o b l e m  re la ted  to the m o t i o n  of  a 
c o n t i n u u m  consis t ing of  f reely gravi ta t ing,  noncol l id ing ,  iden t i f i ab le  par -  
ticles. The  d i f ferent ia l  cons tan t s  of m o t i o n  ( D C M s )  a long the his tor ies  of  
these par t ic les ,  each  of which  is ca r ry ing  a clock,  were de f ined  a n d  f o u n d  
in Enosh  and  K o v e t z  (1978) in  the f r ame  of  Eins te in ' s  t heo ry  of  gravi ta-  
t ion.  The  values  of  these quant i t ies  d e p e n d  on  the pa r a me t r i z a t i on  of  the 
( ident i f iable)  par t ic les .  F r o m  a m o n g  the D C M s  of the first o rde r  (a 
concep t  def ined  there)  in Eins te in ' s  theory,  we concen t ra te  here  on  the 

1Present address: Department of Theoretical Physics, The Hebrew University, Jerusalem, 
Israel. 

693 
0020-7748/80/0900-0693503.00/0 �9 1980 Plenum Publishing Corporation 



694 Enosh and Kovetz 

K~B [defined by equation (2.27) of Enosh and Kovetz, 1978], which are of 
outstanding importance. For example, their derivatives form a basis for 
those DCMs which are independent of the zero adjustment of the time 
along the particles' world lines, and they have completely analogous 
quantities, the K ~  ) [defined by equation (3.1) of Enosh and Kovetz, 1977], 
among the DCMs of Newton's theory of gravitation. These properties are 
discussed in Enosh and Kovetz (1978). The importance of the K~ B is 
further emphasized by a fact proved in Enosh and Kovetz (1972), where 
they appear as KAB=(r "4"vB)-(rB'v~). It was proved there that the fact 
that the KAs are DCMs characterizes Einstein's theory of gravitation as a 
particular case of a generalized theory of gravitation, based on the princi- 
ple of equivalence and on some reasonable physical evidence. In Section 2 
we shall briefly outline this theory and introduce the physical system 
involved, including definition of the/fAn, in more detail. The meaning of 
the above statement is as follows. Given a certain space-time in the frame of 
the generalized theory, this space-time is included in Einstein's theory if and 
only if for every parametrization of the particles, all the K4 B are constant 
along every particle's world line in this space-time. (In fact, we could claim 
either "all the KAB" or "for every parametrization"; these are equivalent. 
Our formulation, however, is the most suitable for what follows.) 

As was claimed in Enosh and Kovetz (1972), the conservation of the 
/fAn along the particles' motion has an equivalent integral form. This is the 
vorticity theorem (conservation of circulation, known particularly from 
hydrodynamics) in the Newtonian frame, and the conservation of the 
kinematical circulation (Synge, 1937) in the frame of Einstein's theory. 
Therefore we may refer to the conservation of the K~B as a generalized 
circulation theorem; this theorem, as we said, characterizes Einstein's 
theory of gravitation. 

We may ask now whether it is possible to weaken this circulation 
theorem such that its imposition would not imply Einstein's theory, but, 
rather, permit more general theories. More specifically, instead of claiming 
that all the KAn are DCMs we ask whether nontrivial functions of the KAn 
exist such that the requirement that they be DCMs (that is, constant along 
every free particle's motion, for every parametrization of the particles) does 
not imply Einstein's theory. A priori it could happen that every nontrivial 
DCM of the type F(KAn ) characterizes Einstein's theory. This, however, is 
not the case, and, therefore, it is natural (and not trivial) to discuss the 
problem: which gravitation theories can be characterized by DCMs of the 
type F(KAn)? This we do in Section 3. The essential difference in the 
mathematical technique between the work done in Enosh and Kovetz 
(1977, 1978) and the present work is as follows. In Enosh and Kovetz 
(1972, 1978) we looked for DCMs common to a given class of space-times. 
Therefore, while checking a certain differential quantity we vary the 
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particles' parametrization as well as the space-times in the class. Here, 
mostly, we are given a differential quantity and have to find the space-times 
in which it is a DCM. (Then we choose certain differential quantities.) 
Therefore, while checking a certain space-time we only have to vary the 
particles' parametrization. 

Throughout this paper small Latin and Greek and capital Latin 
indices run over the ranges (0,1,2,3}, (1,2,3}, and {1,2 . . . . .  6), respec- 
tively (except when otherwise noted). The metric tensor g;j has the signa- 
ture of r/iy - -diag(+ 1, - 1, - 1, - 1), {~)  are the Christoffel symbols, Fjk--i - 
F~j denote the coefficients of a symmetric affine connection. F-covariant 
derivatives with respect to a parameter, are denoted by means of 8 /8  (e.g., 
8ui/Ss), and with respect to coordinates by means of a double stroke (e.g., 
gijll~)" Round and square brackets around indices denote the symmetric 

i and the antisymmetric part, respectively. The curvature tensor, Ry~/, con- 
i w i a structed out of the Fj/k is chosen so that 2 ~llty[l~]--R,,Jk~ �9 The general 

summation convention is strictly kept: a letter occurring twice, no matter 
where, as an index in a product should be automatically summed over the 
whole range of the index. For  scalar products between 4-vectors we 
sometimes write (AB)=-Ai Bi or (CB)=-giyCiB j. As usual we mark the 
important equations by a running number. In addition, however, we 
introduce in some sections a notation by letters for equations of "local" 
importance. 

We shall have to solve systems of homogeneous linear partial differen- 
tial equations of the first order for a single unknown function. We shall 
apply to them the usual technique of crossing processes outlined, for 
example, in Schouten (1954). In order to describe our operations economi- 
cally we introduce the following notation: Let F(y) satisfy 

a 
( a ) :  ai-~y i F - - - - - 0  

0 
Co): bis- y / F ; O  

(Here: i, j =  1 . . . .  , N; N arbitrary). Then F also satisfies 

(c) : aj O ~yj(bi~-~F) -by O--~'{ai a--~'F~Ci 0 Oyj ~ Oyi ] ,,r, F = 0  

obtained, we say, by crossing of (a) and 0a). We shall write symbolically 
[a, b] -- (c). 

Before continuing we would like to make the following remark. 
Although, for obvious physical reasons, the discussion here is carried out 
for a normal hyperbolic four-dimensional space-time, the results obtained 
hold in a general Riemannian space (signature arbitrary); one can get them 
by slight modification of the proofs. 
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2. THE PHYSICAL SYSTEM AND ITS MATHEMATICAL 
STRUCTURE 

The following result was proved in Enosh and Kovetz (1972). Let gij 
be any metric tensor of a normal hyperbolic type defined on a differential 
manifold. Then there exists a one-to-one correspondence between the 
projective structures (geometries of paths which are locally geodesics with 
respect to affine connections), the paths of which can be classified as 
timelike, null, and spacelike with respect to the metric, and the tensor 
fields eOk which satisfy 

e(ijk ) = e [ i j ] k  = 0 (2.1) 

These projective structures are determined by the affine connection 

~/k= (jk } "l-2giaejk a (2.2) 

which is specified in the projective class of affine connections by the 
property that the metrical length s is the affine parameter along the F 
geodesics. An equivalent form of (2.2) [and (2.1)] is 

gijl Ik = 2eijk (2.3) 

As a physical system we assume that the timelike and null members of 
the projective structure form the histories of free gravitating particles and 
light rays, respectively, and the metric determines the clocks' rate along 
timelike lines. We adopt here this model for space-time. Einstein's theory 
follows as a particular c a s e :  eijk=O. 

Let x' be arbitrary coordinates in space-time. Six parameters (d) - -  = 
(d a) serve to identify the possible motions of free particles: xi=~i(s, d) 
[x=Y(s;d)  below], where s is the proper time. We define 13 vectors at 
,~(s;d): 

V'=-- OX'os D~-- O~' U i= 8--~-- U'--~--TD ~ ( 2 . 4 )  
, Od.4 , A - -  6 d  A 

They satisfy 

(UU)= 1, (UUA)= --e rrqrjr~k (2.5) i j k , J  ,,... x... A 

~-~sU; -- 0 (2.6) 
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The second equation of (2.5) is a consequence of the first one [ (UU)= 1], 
and (2.3). Let us denote 

(ui)=(U~ (D~)=(D~ 

( ) = ( u~ u2, uL  u2 ). 

Then a necessary and sufficient condition for ~(s; d)  to include (locally) all 

det 

the free particles' motions is 

(u ' )  o 
(uO 

o (v') 

4:0 (2.7) 

Let us denote the matrix appearing in (2.7) by x and the metrical matrix by 
(gij). It is possible to nullify the first column and the first row, apart from 
their last components, of the matrix 

o 

x((gis)  

(x t is the transpose of x), by adding suitable products of its last row and 
its last column to its other rows and columns. It then follows that (2.7) is 
equivalent to 

det(KAn ) > 0 (2.8) 

where 

- - _  i j i j - -  KAB= PijD~U~ + P,.jDBU~=KtaB] 

Pij -~ gij - gi~ gjb U~Ub 

(2.9) 

(2.10) 

It is easy to show that the KAs defined by (2.9) are identical with those 
mentioned in the Introduction. 

Now, by means of a construction it is possible to prove the following: 
Given a space-time structure (that is, gij, eijk), certain (So; do), ~(So; do) , and 
a system of coordinates near ~(so;do), then, apart from (2.5) and (2.7), the 
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quantities (Ui, D~,U~) at (so;d0) are arbitrary. Since (2.7) is inequality, 
apart from (2.5), (U i, D~, U,~) are functionally independent. The range of 
values of these quantities is attained by transforming the parametrization 
(d) and the zero adjustment of clocks: s ~ s '  = s + f ( d )  [ f (d )  arbitrary]. 

3. THE CENTRAL THEOREM 

We sum up the results of the present paper in one theorem, and the 
remainder of this section is devoted to its proof. It is important to note that 
all the functions and equations appearing below are assumed to be defined 
and to exist in certain (not necessarily the largest possible) domains of 
independent arguments, quantities, events, orthonormal tetrads, parametri- 
zations of particles; zero time adjustments, etc. This is always assumed 
without explicit reference; all this in the frame of the generalized theory of 
space-time based on (2.1) and (2.2). 

Theorem . (a) If a nontrivial function of the KAn, F(KAs) ,  is a 
DCM, then space-time assumes (at least) one of the following 
possibilities: 

1 1 (1) eij k =gqe  k -5g i~e j  - 5gjkei (Weyl type) everywhere (3.1) 

( 2 )  _ _  I a b  __/'~ ei =3g  eabi - v everywhere (3.2) 

(b) If space-time is non-Einsteinian (ei jk~O) and F(KAB ) is a 
DCM, then either (1) F is homogeneous of zero order in the KAB, 
or (2) F =  ~(det(KAs)), �9 arbitrary function of one �9 If F 
is not trivial these possibilities are disjoint; in the first case 
space-time is always of the Weyl type [satisfying (3.1)], in the 
second space-time is always of e~ = 0 type. 

(c) Among the F ( K a s  ), det(KAn ) is (modulo functional de- 
pendence) the only characterization as a DCM of the theory 
proposing e i = O. 

(d) Among the F(KAB ), no DCM characterization of the 
Weyl type theory exists. In particular, every nontrivial F(KAs )  
homogeneous of zero order characterizes as a DCM the Weyl type 
theory with further restrictions o n  gij and e i. 

(e) The claim that all homogeneous functions of zero order, 
F(KaB), are DCMs characterizes the theory in which space-time is 
of the Weyl type [equation (3.1)] and e i is closed: 

etslljl=0 (3.3) 
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Proof. Equations (2.1)-(2.6) imply 

l T i l  l~i TTal)bllc 
8---s '-'A -- " abc'-" "-'a '-" 

Then, starting with (2.9) it is possible to show 

I~ AB = ( etb R~a,, -- ptaRtmbn ) UmU"D~D b 

+ 2(V;D - V;DDeo mV 

+ e,~, , ,V"Un[ U.ff( UDn ) - U~( UDA) ] (3.4) 

where a dot denotes (time) s differentiation along the particles' world lines. 
From now on we adopt the convention that all the tensor components 

appearing are understood with respect to an orthonormal tetrad, the zero 
member of which is U i. With this agreement (2.7), (2.9), and (2.10) read 

de t |  : " q=0 (3.5) 

( D.~ ) ~ (  DJ , D2 , D 3A ) , ( U;  ) =~( UJ , UAa, UA 3 ) 

K A s  = D ~ U $  - D ~ U , ~ ,  (3.6) 

eij =~ij  --~io~jo (3.7) 

Also 

i i g/ j  = % ,  u = 8~ (3 .8)  

Equation (3.4) becomes, with the aid of (2.1), (2.5), (3.7), (3.8), 

_ 1 l m n a B t ~ a , - ( V t p R m ~  ~ -e ,~Rml~n)U U D~D s +4U~ADgle~ao (3.9) 

All the (D~,  Uff) for which the / (As,  defined by (3.6), are given constants 
form a manifold of dimension 21 (=  36-15), since the Kas  are 15 function- 
ally independent functions of the 36 {D~, U~}, (Enosh and Kovetz, 1977); 
we call it a K manifold. 

A function F ( K 4 s )  is a DC M in a given space-time if and only if it 
satisfies (OF/OK.~B)KAB =0. Specifically with our conventions [with the 
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aid of (3.9) and the remark concluding Section 2]: F(KAB ) is a DCM in a 
given space-time (gu and eUk given) if  and only i f  

OF _ t frmrr, ,n , ,n ,  OF ~, 
, , . ,  , , . . ,  . J  A JL~ B 3KAs ( P#~R~,~. PlaRmBn ) - 4  O-ff'-~'~ABDtaUff]e,#o =O 

for the (D~,Uff)  in the K manifold determined by the arguments of F. 
(This equation should be understood in a region of space-time and for all 
the orthonormal tetrads in a certain domain of tetrads.) 

A transformation of the type D~-->AD~,UA~-->A-1Uff ()~ arbitrary) 
retains the K manifold. Hence it follows immediately that F(KAB ) is a 
D C M  in a given space-time if and only if  

OF 
D~A Uffle~# o = 0 (3. lOa) 

OKan 

OF [ p  RI _ t m ~ ~ # 
O-~A ~ ,~ m~,n Ph~Rmp.) U U D~DB=O (3.10b) 

for the ( D~, Uff ) in the K manifoM determined by the arguments of  F. 
We shall dwell a little more upon equation (3. lOa). Since e,,,0 =e(~p) o, 

equation (3.10a) takes the form 

( OF/OICt.  J)D(a ~ = o 

where (OF/OKIAsl) is understood so that the antisymmetrization is per- 
formed after differentiating. (In fact, there can be no other meaning.) A 
simultaneous orthogonal rotation of the D,~, U,~: D~-->T~#Dff, U,~T~#Uff ,  
(T ~ an orthogonal matrix) retains the K manifold, and we may apply the 
lemma of the Appendix to the last equation; then we obtain the following. 
Equation (3.10a) is satisfied if  and only if  for every sequence of  permitted and 
consistent values of the arguments exactly one of the following four possibili- 
ties exists: 

( OF/OKtAB))D "V >=O 

( OF/OXt..)OJmg § 

e aB o = a~aB 

( O F /  OKtAnl) D(AaUff) = a6 ~a, 

e~a o = 0 

a r  

a~O, e,,~o~0, e~ o =0  

(3.1 la) 

(3.115) 

(3.1 lc) 

(3.11a) 
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Proof of part (a). Assume that F is a nontrivial DCM in a given 
space-time. The Kas are arbitrary antisymmetric; hence (OF/OKIAnl)v~O. 
We choose Kas such that (OF/OK[aBI)~O. We claim that it is possible to 
find (D~, U~) on the chosen K manifold such that (OF/OKIABI)D)"U ~) v ~ 
0: otherwise, (OF/OKtaBI)D(A"U~)=O identically over the K manifold. 
Then applying to this equation transformations of the type 

D~ --->Dff, U~ ~ Uff + X6 ~( ~D~ ), )~ arbitrary. 

which retain the K manifold, we can obtain (OF/OK[anI)DffD~ s =0. In a 
similar way (OF/OKtaBI)U~Uff=O. By applying to these equations the 
transformations (Dff--->D,~+AU~,U~--->Uff} which too retain the K mani- 
fold, we obtain (OF/OKtAB1)DtA~U ff] = 0, and finally with the first equation 
we have (OF/OKtAB1)D~D~ = (OF/OKIasI)DfU ~ = (OF/OKIaBI)U~D ~ = 
(OF/OK as )U~Uff =0,  which imply, with the aid of (3 5), (OF~OK An ) = 0  [ ] ^ " [ ] " 

Contradiction. Hence (D~, Uff } exist such that (0F/0KIABI)D~ ~ O. 
Now we choose a point provided with an orthonormal tetrad in 

space-time. F has to satisfy (3.11) at this point. But, for the above D,~, Uff 
equation (3Ala) is untrue; hence one of (3.11b-d) has to be true. This 
means that e ~  0 = 0 or e,,~o = a ~  or %~0 =0. Since this is true for every 
tetrad at this point we easily obtain by continuity considerations that an 
orthonormal tetrad neighborhood exists such that e~  o = 0  for all its 
members, or e,,~o --aO,,p for all its members. In the first case, gabe,,br162 = O, 
[since e0o0=0 by (2.1)], for a neighborhood of U ~. Hence g~beabc-----O, 

1 = 0  for all the [equation (3.2)]. In the second case e ~  o-Og"beabog~ 
tetrads in the neighborhood. This implies that 

1 1 
1 + _~gjkei a i j k  = e i j k  - - g i j e k  + ~ g i k e j  

_ 1  where e i = 3 gabeabi, satisfies 

a( i j k  ) = a [ i j ]  k = 0 ,  gabaab  k = 0 ,  a a b c n a m b u  c ------0 

for a neighborhood of (timelike) U a and (nU)=(mU)=O. We claim that 
this implies aij k --0 [equation (3.1)]: At first we may replace every n a by 

a f g 1 d e a a n -(gygU U ) -  (gdeU n )U , where now n is arbitrary, and a similar 
replacement of m ~. Then with the aid of a (ijk) =atij]k =0  we obtain 

a ab(cgde ) - -  a a(degc) b --  ab( degc) a = 0 

Now some contractions of this equation and the symmetries of aab c lead to 
aab c =0,  as was claimed. Thus at all points (since our chosen point was 
arbitrary), (3.1) or (3.2) exist. We have to show, however, that (3.1) is 
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everywhere true, or the same for (3.2). Assume, on the contrary, that two 
points exist such that at one (3.1) is true with e i 4=0, and at the second (3.2) 
is true with eii ~ =~ 0. It is possible to find an orthonormal tetrad at the first 
point such that e~# o - -a~#,  a4=0. It is possible, also, to find an orthonor- 
mal tetrad at the second such that e ~  o 4=0 [since, otherwise, e~/~0 = 0 holds 
always and, by the preceding considerations, implies equation (3.1); but 
equations (3.1) and (3.2) together imply the vanishing of eijk]. We know 
already that D~,Uff exist such that (OF/OKIAsl)D~"Uff)4=O. Since (3.11) 
has to exist at both points we find (OF/OKtABI)D~U ~ = 0  owing to the first 
point and (OF/aKas D~'~Uff)=a8 '~ owing to the second. Hence [ 1 
(OF/OKtAs]D(/~Uff) =0. Contradiction. This completes the proof of part 
(a) .  [ ]  

Proof of part (b). Assume that space-time is (given) non-Einsteinian 
and F(KAB ) is a DCM. Assume, further, that F is nontrivial. [Otherwise, 
the argument is trivial.] It is obvious, then, that the possibilities 1, F 
homogeneous of zero order, and 2, F=cb(det(Kas)), are, indeed, disjoint. 
We now make use of part (a). Hence, space-time has to be of the Weyl 
type or of the e i = 0 type. 

Assume first that eij k takes the form (3.1). An event exists at which 
e~j k v~0, and an orthonormal tetrad at this event exists such that e ~  0 =at~/~ 
for a ~ 0 .  However, one of the possibilities (3.11) has to be satisfied. 
Obviously, the relevant possibilities are (3.11 a) and (3.11 c), and in both of 
them (aF/aK[Asl)D~Us ~ =0. With the aid of (3.6) this is equivalent to 

( 3F/3KAB)KAB=O (3.12) 

which means that F is homogeneous of zero order in the KAs. 
Assume, next, ei=O. In a similar way we find, again by (3.11), (3.6) 

and a part of the considerations in the proof of part (a), that 
(OF/OKIAsl)D(A'~U ~) = a8 ''~. Equivalently, 

( D(~'U ~) - ~8"BKAB)( OF/OKAB)=0 [A B] (3.13) 

Now we find the solutions of this equation. We look upon F(KAs) as a 
function of the Dff, Ug according to (3.6). It follows that 

(OF/ODff) = ( OF/OKaB) Uff - ( OF/aKBA ) Ug 

Therefore 

(~F/~K.s)D[]Ug~= �88 [ D;(~F/aD~) + Dff(~F/~D~) ] (3.14a) 

( OF/OKas)KAs =Dff( OF/OD~) (3.14b) 
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Now, F( KAs ) satisfies (3.13) if and only if as a function of the D~, Uff: 

(a): D~(OF/OU2)+ D~(OF/OUA~)=O 

Co): UJ(OF/OD )+ U (OF/OD )=O 
(c): n (aF/On )- U (aF/OUg)=O 

(d): n;(OF/Ong) + Dg(OF/OD;)- ] 8" D (OF/OD ) = 0 

Equations (a), Co), (c) above are satisfied by every function of the KAB (a 
simple check); moreover, they ensure that F depends on the D~,Uff 
through the KAn. [Cf. equations Co), (d), (f) of Section (3.3) of Enosh and 
Kovetz 0977)]. Equation (d) is, in fact, (3.13) (with the aid of (3.14)). We 
apply now some linear combinations and crossing operations to equations 
(a)-(d). A contraction of or=, / in  [a,d] leads to 

(e): D2(OF/OUg)=O 

A contraction of/~ = i, in [e, b] leads to 

(0: n (aF/On )- UgOF/OU{)=O 
Applying (f) and (c) to (d) leads to 

(g): n;(OF/Ong)- 1 W~D~(OF/OD;)=O 

A contraction of /~=f l  in [b, g] leads [with further use of Co)] to 

(h): U~(OF/OD~)=O 

The system (e), (h), (f), (g) implies and is implied by the original system (a), 
(b), (c), (d). It is possible to show that the new system is closed, that is, 
crossing operations do not lead to any new equations. Equations (e), (h), 
(f), (g) consist of at most 9, 9, 9, 8 linearly independent equations, 
respectively. They form, however, exactly 35 (=  9 + 9 + 9 + 8) linearly inde- 
pendent equations for the 36 unknowns ((OF/OD~), (OF/OUas)) since the 
addition of only one equation: D~(OF/OD~)=O implies, with the aid of 
(3.5), (OF/OD~)= (OF/SUrf)= 0. Hence we know that equation (3.13) ad- 
mrs,  up to a functional dependence, one and only one solution. We claim 
that Fo=det(KAB ) is the solution of (3.13). By (2.8) Fo=/=0 and obviously 

( OFo/OKAB ) = (a [ det( K a B ) ] ~OK.4 8) = det(RAn)K BA 

= Fo KsA (3.15) 

where (K as) is the matrix reciprocal to (KAs). In order to prove (3.13) for 
F o it is sufficient (since K As is antisymmetric) to show that 

KABD(~Uff)=8 ~/~ (3.16) 
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To this end we observe that we may refer to the indices A, B of D~, Us ~, 
K4 s as covariant indices, while those of K AB are contravariant with respect 
to transformation of the type D ~ D ] ,  =@if, Dff, Uff---~U~ =@if, U~. With 
respect to these transformations equation (3.16) is a scalar equation. We 
choose that transformation which makes the matrix of (3.5) the unit 
matrix, that is, 

D~-8~,~- ~ U~=8~ +3 ( a =  1,2,3; A---7 . . . .  . ~) (3.17) 

and then, by (3.6), 

( K A , ) = (  O I 01) =./, (KAB) =j t  

or, equivalently, 

1 
KaB= -- 1 

0 

B = A + 3 ,  A = l , 2 , 3  

A = B  +3, B= I,2,3 
otherwise 

(3.18) 

With the aid of (3.17) and (3.18) we may now calculate 

K A B r • ( a t  r#) -- ! [ tcasr~arr~ a_ ~cA~n,r ra 
~ A  *"B  - - 2 \  *~ ~ A ' : B  - ~ t ~  " * J A M B ]  

3 13 = !/" D-~I:B -D~----U~ +D:,U-- /~ '~ 

= 

This completes the proof of part Co). [] 

Proof of part (c). We say that a set of DCMs characterizes a theory if 
every space-time available to the theory admits these DCMs and, on the 
contrary, every space-time which admits these DCMs belongs to the 
theory. According to part (b), among the F(KAs ) only det(KAs ) can have 
the property of characterizing the theory based on ei=0. The DCM 
Fo___det(KAs ) indeed implies e /=0;  we have, however, to show that F 0 is a 
DCM in every space-time satisfying ei=0; equivalently F o has to satisfy 
equations (3.10). The preceding discussion ensures that F 0 satisfies equa- 
tion (3.10a). We only have to check (3.10b). By a method similar to that 
used in the proof of part (b), that is, specializing to the case (3.17) and 
(3,18), we can prove KABD~D~s=O. This fact and equation (3.15) imply, 
indeed, equation (3.10b). This completes the proof of part (c). [] 
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then a contraction of g=~- in [i, b] leads to 

(j): (OF/OD~)=O 

Therefore F is a trivial function. Contradiction. This completes the proof 
of part (d). 1 

Proof of part (e). By the preceding discussion we obtain the following. 
In a given space-time all the homogeneous functions of zero order, 
F(KAB), are DCMs if and only if space-time is of the Weyl type and 
Equation (3.10b) is satisfied by all these functions. For given KAB, 
(OF/3K[ABI), for our functions, is arbitrary apart from the linear restric- 
tion (3.12). Hence, by comparing this equation with (3.10b), in which 
(OF/OKtaBI) has exactly the same restrictions and no more, we obtain 

a B 1 1 m n 
D~IDB(  P I f l R m a n - P I a R m B n ) U  U - ~ I t K A B  

for any/~, as an equivalent form of the claim that (3.10b) is satisfied for all 
homogeneous F(KAn ) of zero order. By (3.6)-(3.8) we may write the last 
equation in the form 

a b 1 la mbn] ''v ~ ~ B(JA--IJAI"IB]I-ab D~Ds(PtbRm~__ P R t ~lrmtr, . (Da,rb r~a,~b~D (3.19) 

which has to be satisfied in every system of coordinates, owing to its 
covariance. Apart from (2.5), the Um, D~,U~ appearing in (3.19) are 
functionally independent, according to the final remark of Section 2. The 
restriction (UUa)+e~jkUiU)Da*=O of (2.5) is redundant, however, since for 
arbitrary D~,U b in a domain we may define 0 ~ =  U~-[(UUs)+ 
emnlUrnUnDlB]ua, then ~A,/)a "vB~b satisfy (2.5) and substitution of them in 
(3.19) leads to the equation obtained from (3.19) by substitution of D~, Uff 
in it. Therefore we may sum up the last conclusions as follows. Define for 
U a satisfying (UU)= 1 

- -  l l m n  
m a b : ( ~ b R m a n - - ~ a R m b n ) S  g (3.20) 

Then, all the homogeneous functions of zero order F(KAs ) are DCMs if 
and only if space-time is of the Weyl type and for every mab defined above 
and functionally independent D~, Uff 

a b a b _  a b m D D  m D D  P D U  ab [A B]~" ab A B - - ~  ab [A B] 

for a certain/z. 
Since/~ may depend on the D~, U~ we cannot conclude directly that 

the monomials in the variables D~,U~ in the last equation vanish 
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separately. We cannot even put Uff =0  since this is excluded by (2.7). 
Nevertheless, the left-hand side of the last equation vanishes identically. 
We prove this. Assume, on the contrary, mobD,~D ~ q=O for the certain D~. 
T h e n ,  

a b__ a b mabD~D B - izoPabDt~U~l, IZo--/=O 

and, of course, an index b o exists such that P~boD~=/=O. Let VA be a 6-tupple 
which does not belong to the space spanned by the a 3 (D~ }a=0, (four 
dimensional at most). Define: u~^a--= u~a +hVASbo.a Then 

a b a ^ b w  a b a m ab D~ D E = I-tx Pab DIAU~I - ttx Pab DIAU~] + Xttx PaboD[AVBI 

or by the preceding equation 

a b --1 a b a m ab D~ D s -  I~xtto m ab D~ Ds + ~t~x Pbo~D[.aVn I 

But Pboa D ] # 0  and the antisymmetric quantity of dimension 6, PboaDIaAVBj, 
is independent of the a b 3 . (DtADBI)~,b=O, hence ?,/~x-0, which implies #x=0, 
which further implies mabD,~D~=O. Constradiction. Therefore, mabO~D ~ a  b 
=0  for functionally independent D~, and hence m~b=O. Thus, by (3.20) 
and by (2.10), 

t R t m n t t p q m n _  (gatRmbn--gbt man)e e--(gapgqtRmbn--gbpgqtRman)e v e e - 0  

for all U a (in a domain) satisfying ( U U ) -  1. This is an equivalent claim to 
(3.19). By putting U a= (gij~i~J) - 1/2~a, where ~a is arbitrary (in a domain), 
we finally find that the last equation is equivalent to 

g [ a b ] ( p q m n ) = O  (3.21) 

where 

g abpqmn = (  gpqga t  -- gapgq t  ) Rtmbn (3.22) 

Hence the homogeneous functions F(KAs ) of zero order are DCMs if 
and only if space-time is of the Weyl type and satisfies (3.21). However, by 
decomposing R~.kl as a sum of Riemarm's tensor and a term vanishing with 
e,.jk, and substituting this decomposition into (3.21), one finds in the case 
of Weyl's type space-time [equation (3.1)] that (3.21) is equivalent to (3.3). 
This completes the proof of the theorem. �9 
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4. SOME CONCLUDING REMARKS 

If one is interested in theories which are special cases of the gen- 
eralized theory [based on equations (2.1) and (2.2)], such that the permitted 
tensors eli k at a point form a linear space which is independent of the point 
and of the orthonormal tetrad (that is, the components eUk are restricted in 
the same way with respect to every orthonormal tetrad, the principle of 
relativity following the footsteps of the principle of equivalence), then only 
two nontrivial possibilities are available: the ei=O type theory [equation 
(3.2)] and the Weyl-type theory [equation (3.1)]. The reason is that the 
above requirements mean that the e~j k space has to be a representation 
space of the proper Lorentz group (Lp), and the above two subspaces are 
irreducible representation spaces for Lp which span the whole space of the 
eij k satisfying (2.1). This result is achieved by investigating the spinorial 
representation of e~j k. This remark refers to a four-dimensional space of a 
normal hyperbolic type only. 

In Section 3 we proved that nontrivial weak circulation theorems may 
exist only in space-times which belong to one (at least) of the above 
theories. 

The theory based on equation (3.2) (ei=0), is characterized by a 
single DCM, det(KAB ), and a space-time of this type which is not Einstein's, 
(euk~O),  never admits other DCMs of the type F(KAB ). From the 
physical point of view, measurement of det(KAB ) is not practical since it 
requires the existence of a six-parameter set of particles, while it seems that 
at most a three-parameter set of particles is available. 

The theory based on equation (3.1) proposes space-times of the 
so-called Weyl type. The reason is that their projective and conformal 
structure form a Weyl's space. (See, for example, [Enosh and Kovetz, 
1973]). They have, however, an extra structure--an exact determination of 
the metric. In such non-Einsteinian (e i v~0) space-times one sometimes can 
find DCMs of the type F(KAn), which are always homogeneous of zero 
order. On the contrary, every nontrivial DCM of this type implies Weyl-type 
space-times. But no such a DCM characterizes this theory: every one of 
them restricts the possibilities more than by (3.1) only. Since we had no 
physical reason to prefer such a function or functions, we tried to choose 
them all as DCMs. This claim characterizes the Weyl-type space-times 
with closed e i [equation (3.3)]. In such space-times, we know from Weyl's 
theory, the geodesics (free particles and light rays), are Riemannian, 
derived from a metric g~'j; the rate of clocks, however, is determined by 
another metric gij conformal to the metric g;j. Thus we have arrived at a 
Riemannian theory of space-time admitting one scalar function. 

The homogeneous functions of order zero of the/fAn are restricted by 
only one equation, (3.12). Hence it follows easily that they together with 
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the function det(KAs ) span functionally the space of all the functions of 
the KAs. 

If one is interested only in the projective and the conformal structures 
of space-time (cf. Ehlers, Pirani, and Schild, 1972), only those functions 
which are invariant under the conformal transformations of the metric are 
important. Generally the KAs do depend on such transformations. How- 
ever, it follows by direct calculation that the homogeneous functions of 
order zero of the KAB are projective-conformal quantities and, by the 
remark of the preceding paragraph, that up to functional dependence there 
are no Other projective conformal quantities among the functions of the 
KAs. [det(KAs ) should depend on the conformal transformation.] A com- 
plete set for them is [det(KcD)]-l/6KAs. In the case of conformal- 
projective space-time in which the projective lines preserve their conformal 
character, it follows by the main theorem of this paper that the conserva- 
tion of one (arbitrary) of the above quantities can occur only in a Weyl 
space and that the conservation of all of them characterizes (locally) the 
Riemannian structure (up to a multiplying constant of the metric). An 
interesting question in this context (and also in the more general metrical 
case) is whether it is possible to weaken the last claim in ways that theories 
more general than the Riemannian one are characterized, and in case that 
the answer is yes, to classify the possibilities. This problem is now under 
consideration. 

APPENDIX: A LEMMA CONCERNING MATRICES 

Lemma. Let S and T be two real symmetric (n• matrices 
which satisfy 

tr(SRTR') = 0  (A.1) 

for every orthogonal matrix R in a certain (arbitrary) neighbor- 
hood of the unit matrix I. (R t stands for the transpose of R.) 
Then, one of the following possibilities should occur: 

(a) S = 0  or T = 0  

(b) Sva0, Tv~0, tr T=0,  S=al (a~O) 

(c) S~O, T~O, tr S=O, T=al (argO) 

Proof If the orthogonal matrix R were arbitrary the proof would be 
much simpler. In such circumstances it is possible to reduce the lemma to 
diagonal S, T, since every real symmetric matrix is equivalent by an 
orthogonal matrix to a diagonal matrix and tr(AB)=tr(BA). Then the 
lemma follows as a consequence of some choices of R which change the 
order of two elements in the diagonal of T (det R--- - 1(!)]. 
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However, we consider now only those Rs confined to a certain 
neighborhood of I. Let A, B be arbitrary antisymmetric real matrices. Then 
R(h,  g ) =  exp()~A)exp(/zB) is orthogonal, for all real h, g. We put R =  
R(h,  g) in (A.1) for both X and/z in a certain neighborhood of 0 such that 
R()~, g) is contained in the given neighborhood of L Now we differentiate 
(A.1) with respect to h, obtaining one equation, and differentiate, then, the 
resulting equation with respect to g, obtaining a second equation. A 
substitution of h = #---0 in (A. 1) and in the last two equations leads to 

tr(ST)---O 

tr( TSA - STA ) = 0 

tr( A B T S  + S T B A  - S A T B -  S B T A )  = 0  

(A.2) 

(A.3) 

(A.4) 

for every antisymmetric A and B. Since S = S ' ,  T =  T t, A = - -A t we obtain 
with the aid of equation (A.3) 

tr(STA) = tr( STA )' = - tr(A T S )  = - tr(TSA) = - tr(STA) 

Therefore 

tr(S TA ) = tr(TSA) = 0 (A.5) 

for every antisymmetric A. A complete set for the antisymmetric matrices 
is formed by the matrices {(A,a)},,/~= 1 ...... defined by 

(A.6) 

We put A =(Asp ) in (A.5); 

0 = t r [  ST(A,~fl) ] = S~pTp~,( A.~)~, = SflpTpa- Sc, pTpfl= SflpTp,~- T~oSp. 

Therefore 

S T =  TS  (A.7) 

We put now A =(Asp  ), B=(Avn ) in equation (A.4) and, with the aid of 
(A.7), we obtain 

F + 

(A.8) 
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By the contraction of fl = 8 and, with the aid of (A.2) and (A.7), we obtain 

- nS, wTuv + S,~Tev + Tm, S~, = 0 (A.9) 

Contraction of a =7  in (A.9) leads, with the aid of (A.2), to 

S..T..=O (A.IO) 

We distinguish three cases which cover according to (A. 10) all the possibil- 
ities (1) S~,~ = T~ =0;  (2) S~v#0, T~ =0; (3) T~ =/=0, S~,v =0. 

In case (1) the following equations are satisfied: 

- s . , ~ ,  + sa, re,  + S . , ~ , -  sa, re,  = 0 (A. 11 a) 

(A. 1 lb) 

(A.1 lc) 

[Equation (A.11b) is, in fact, (A.9), and (A.11a) is a consequence of a 
substitution from (A.9) to (A.8)]. The only solutions of the system (A.11) 
(for symmetric Sea, Tee ) have the form Sap=0 , T, ,=0 or T,,t~=0, S,,=0. 
We prove this assertion now: Assume Te~=/=0. We have to show S~a=0. 
The system (A.11) is invariant under equivalence transformations de- 
termined by orthogonal matrices performed simultaneously on S and T. 
Since T is real symmetric we may assume, without any loss of generality; 
that T is diagonal and Tll=~0. Now we put ~,=1 in (A.11b) and obtain 
Sel =0. Next we put fl=~,= 1 in (A.1 la) and obtain Se~=0. This completes 
the proof of the assertion and, therefore, case (1) implies possibility (a) of 
the lemma. 

In case (2) the following equations are satisfied: 

- s . . ( r eA.  - re.~B,- r~,8o. + ~ & , )  

-nS~t~T~r + S,~Tev=O 

s . .§  r,~=o 

(A.12a) 

(A.12b) 

(A.12c) 

[Equation (A.12b) is, in fact, (A.9), and (A.12a) is a consequence of a 
substitution from (A.9) to (A.8).] 

If {S~a, Te~ ) form a solution of (A.12), it is easy to see that (Sea-  
(l/n)Smfle/j, TeB ) form a solution of (A.11). It follows, therefore, as we 
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know already, that T~,= 0, which is possibility (a) of the lemma, or T~r 
and S ~ 1 3 - ( 1 / n ) S ~ 8 ~ = 0 ,  which is possibility (b) of the lemma, [since 
(A. 12c) is satisfied]. 

The treatment in case (3), ( T ~ 0 ,  Sv~=0) is completely analogous to 
that of case (2): we have only to exchange the roles of S and T. This 
completes the proof of the lemma. [] 

The same type of proof implies a similar lemma in which S, T are 
Hermitean and R is unitary. 
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